Thursday, July 28, 2011

Paleoclimate evidence on rapidity of climate change

How rapidly will climate change occur? Traditionally, the changes were expected to be linear -- that as the amount of carbon in the atmosphere went up, the temperature would rise proportionately. Over the past few decades, this view has increasingly been replaced with the recognition of tipping points and the possibility of comparatively rapid change. James Hansen and Makiko Sato have recently produced a pair of papers -- one technical and the other focused on a more general audience -- describing their recent findings suggesting that the bulk of change from certain feedback processes will occur in a period of decades rather than centuries. Here is the introduction from the non-technical version: Earth's Climate History: Implications for Tomorrow
The past is the key to the future. Contrary to popular belief, climate models are not the principal basis for assessing human-made climate effects. Our most precise knowledge comes from Earth's paleoclimate, its ancient climate, and how it responded to past changes of climate forcings, including atmospheric composition. Our second essential source of information is provided by global observations today, especially satellite observations, which reveal how the climate system is responding to rapid human-made changes of atmospheric composition, especially atmospheric carbon dioxide (CO2). Models help us interpret past and present climate changes, and, in so far as they succeed in simulating past changes, they provide a tool to help evaluate the impacts of alternative policies that affect climate.

Paleoclimate data yield our best assessment of climate sensitivity, which is the eventual global temperature change in response to a specified climate forcing. A climate forcing is an imposed change of Earth's energy balance, as may be caused, for example, by a change of the sun's brightness or a human-made change of atmospheric CO2. For convenience scientists often consider a standard forcing, doubled atmospheric CO2, because that is a level of forcing that humans will impose this century if fossil fuel use continues unabated.

We show from paleoclimate data that the eventual global warming due to doubled CO2 will be about 3°C (5.4°F) when only so-called fast feedbacks have responded to the forcing. Fast feedbacks are changes of quantities such as atmospheric water vapor and clouds, which change as climate changes, thus amplifying or diminishing climate change. Fast feedbacks come into play as global temperature changes, so their full effect is delayed several centuries by the thermal inertia of the ocean, which slows full climate response. However, about half of the fast-feedback climate response is expected to occur within a few decades. Climate response time is one of the important 'details' that climate models help to elucidate.

For those who want the technical details, here is the abstract of the scientific publication.
Paleoclimate data help us assess climate sensitivity and potential human-made climate effects. We conclude that Earth in the warmest interglacial periods of the past million years was less than 1{\deg}C warmer than in the Holocene. Polar warmth in these interglacials and in the Pliocene does not imply that a substantial cushion remains between today's climate and dangerous warming, but rather that Earth is poised to experience strong amplifying polar feedbacks in response to moderate global warming. Thus goals to limit human-made warming to 2{\deg}C are not sufficient - they are prescriptions for disaster. Ice sheet disintegration is nonlinear, spurred by amplifying feedbacks. We suggest that ice sheet mass loss, if warming continues unabated, will be characterized better by a doubling time for mass loss rate than by a linear trend. Satellite gravity data, though too brief to be conclusive, are consistent with a doubling time of 10 years or less, implying the possibility of multi-meter sea level rise this century. Observed accelerating ice sheet mass loss supports our conclusion that Earth's temperature now exceeds the mean Holocene value. Rapid reduction of fossil fuel emissions is required for humanity to succeed in preserving a planet resembling the one on which civilization developed.

No comments:

Post a Comment